Expression and Function of Different Guanine-Plus-Cytosine Content 16S rRNA Genes in Haloarcula hispanica at Different Temperatures
نویسندگان
چکیده
The halophilic archaeon Haloarcula hispanica harbors three ribosomal RNA (rRNA) operons (rrnA, rrnB, and rrnC) that contain the 16S rRNA genes rrsA, rrsB, and rrsC, respectively. Although rrsB and rrsC (rrsBC) have almost identical sequences, the rrsA and rrsBC sequences differ by 5.4%, and they differ by 2.5% with respect to guanine-plus-cytosine content (PGC). The strong correlation between the typical growth temperatures of archaea and PGC of their 16S rRNA genes suggests that H. hispanica may harbor different 16S rRNA genes having different PGC to maintain rapid growth in a wide range of temperatures. We therefore performed reverse transcription-coupled quantitative PCR to assess expression levels of rrsA (PGC, 58.9%) and rrsBC (PGC, 56.4-56.5%) at various temperatures. The expression ratio of rrsA to rrsBC increased with culture temperature. Mutants with complete deletions of one or two of the three rRNA operons were constructed and their growth rates at different temperatures compared to that of the wild-type. The growth characteristics of the rRNA operon single-mutant strains were indistinguishable from the wild-type. The rRNA operon double-mutant strains maintained the same temperature range as wild-type but displayed reduced growth rates. In particular, the double-mutant strains grew much slower than wild-type at low temperature related to minimum growth temperature of the wild-type. On the other hand, at physiologically high temperatures the wild-type and the double-mutant strain which harbors only rrnA with high-PGCrrsA grew significantly faster than the double-mutant strain which harbors only rrnC with low-PGCrrsC. These findings suggest the importance of 16S rRNAs transcribed from rrsA with high-PGC in maintaining rapid growth of this halophilic archaeon at raised growth temperatures.
منابع مشابه
Evidence for strong selective constraint acting on the nucleotide composition of 16S ribosomal RNA genes.
Previous studies have shown that the guanine plus cytosine (G+C) content of ribosomal RNAs (rRNAs) is highly correlated with bacterial growth temperatures. This correlation is strongest in the double-stranded stem regions of the rRNA, a fact that can be explained by selection for increased structural stability at high growth temperatures. In this study, we examined the single-stranded regions o...
متن کاملTranscription analysis of two disparate rRNA operons in the halophilic archaeon Haloarcula marismortui.
The genome of the halophilic archaeon Haloarcula marismortui contains two rRNA operons designated rrnA and rrnB. Genomic clones of the two operons and their flanking regions have been sequenced, and primary transcripts and processing intermediates derived from each operon have been characterized. The 16S, 23S, and 5S genes from the two operons were found to differ at 74 of 1,472 positions, 39 o...
متن کاملSequence heterogeneity between the two genes encoding 16S rRNA from the halophilic archaebacterium Haloarcula marismortui.
The halophilic archaebacterium, Haloarcula marismortui, contains two nonadjacent ribosomal RNA operons, designated rrnA and rrnB, in its genome. The 16S rRNA genes within these operons are 1472 nucleotides in length and differ by nucleotide substitutions at 74 positions. The substitutions are not uniformly distributed but rather are localized within three domains of 16S rRNA; more than two-thir...
متن کاملReconstruction of ancestral 16S rRNA reveals mutation bias in the evolution of optimal growth temperature in the Thermotogae phylum.
Optimal growth temperature is a complex trait involving many cellular components, and its physiology is not yet fully understood. Evolution of continuous characters, such as optimal growth temperature, is often modeled as a one-dimensional random walk, but such a model may be an oversimplification given the complex processes underlying the evolution of continuous characters. Recent articles hav...
متن کامل16S rRNA mutation associated with tetracycline resistance in a gram-positive bacterium.
A genetic basis for tetracycline resistance in cutaneous propionibacteria was suggested by comparing the nucleotide sequences of the 16S rRNA genes from 16 susceptible and 21 resistant clinical isolates and 6 laboratory-selected tetracycline-resistant mutants of a susceptible strain. Fifteen clinical isolates resistant to tetracycline were found to have cytosine instead of guanine at a position...
متن کامل